home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
CU Amiga Super CD-ROM 21
/
CU Amiga Magazine's Super CD-ROM 21 (1998)(EMAP Images)(GB)[!][issue 1998-04].iso
/
CUCD
/
Programming
/
Python-1.4
/
Lib
/
colorsys.py
< prev
next >
Wrap
Text File
|
1996-11-24
|
3KB
|
120 lines
# Conversion functions between RGB and other color systems.
#
# Define two functions for each color system XYZ:
# rgb_to_xyz(r, g, b) --> x, y, z
# xyz_to_rgb(x, y, z) --> r, g, b
# All inputs and outputs are triples of floats in the range [0.0...1.0].
# Inputs outside this range may cause exceptions or invalid outputs.
#
# Supported color systems:
# RGB: Red, Green, Blue components
# YIQ: used by composite video signals
# HLS: Hue, Luminance, S???
# HSV: Hue, Saturation, Value(?)
#
# References:
# XXX Where's the literature?
# Some floating point constants
ONE_THIRD = 1.0/3.0
ONE_SIXTH = 1.0/6.0
TWO_THIRD = 2.0/3.0
# YIQ: used by composite video signals (linear combinations of RGB)
# Y: perceived grey level (0.0 == black, 1.0 == white)
# I, Q: color components
def rgb_to_yiq(r, g, b):
y = 0.30*r + 0.59*g + 0.11*b
i = 0.60*r - 0.28*g - 0.32*b
q = 0.21*r - 0.52*g + 0.31*b
return (y, i, q)
def yiq_to_rgb(y, i, q):
r = y + 0.948262*i + 0.624013*q
g = y - 0.276066*i - 0.639810*q
b = y - 1.105450*i + 1.729860*q
if r < 0.0: r = 0.0
if g < 0.0: g = 0.0
if b < 0.0: b = 0.0
if r > 1.0: r = 1.0
if g > 1.0: g = 1.0
if b > 1.0: b = 1.0
return (r, g, b)
# HLS: Hue, Luminance, S???
# H: position in the spectrum
# L: ???
# S: ???
def rgb_to_hls(r, g, b):
maxc = max(r, g, b)
minc = min(r, g, b)
# XXX Can optimize (maxc+minc) and (maxc-minc)
l = (minc+maxc)/2.0
if minc == maxc: return 0.0, l, 0.0
if l <= 0.5: s = (maxc-minc) / (maxc+minc)
else: s = (maxc-minc) / (2.0-maxc-minc)
rc = (maxc-r) / (maxc-minc)
gc = (maxc-g) / (maxc-minc)
bc = (maxc-b) / (maxc-minc)
if r == maxc: h = bc-gc
elif g == maxc: h = 2.0+rc-bc
else: h = 4.0+gc-rc
h = (h/6.0) % 1.0
return h, l, s
def hls_to_rgb(h, l, s):
if s == 0.0: return l, l, l
if l <= 0.5: m2 = l * (1.0+s)
else: m2 = l+s-(l*s)
m1 = 2.0*l - m2
return (_v(m1, m2, h+ONE_THIRD), _v(m1, m2, h), _v(m1, m2, h-ONE_THIRD))
def _v(m1, m2, hue):
hue = hue % 1.0
if hue < ONE_SIXTH: return m1 + (m2-m1)*hue*6.0
if hue < 0.5: return m2
if hue < TWO_THIRD: return m1 + (m2-m1)*(TWO_THIRD-hue)*6.0
return m1
# HSV: Hue, Saturation, Value(?)
# H: position in the spectrum
# S: ???
# V: ???
def rgb_to_hsv(r, g, b):
maxc = max(r, g, b)
minc = min(r, g, b)
v = maxc
if minc == maxc: return 0.0, 0.0, v
s = (maxc-minc) / maxc
rc = (maxc-r) / (maxc-minc)
gc = (maxc-g) / (maxc-minc)
bc = (maxc-b) / (maxc-minc)
if r == maxc: h = bc-gc
elif g == maxc: h = 2.0+rc-bc
else: h = 4.0+gc-rc
h = (h/6.0) % 1.0
return h, s, v
def hsv_to_rgb(h, s, v):
if s == 0.0: return v, v, v
i = int(h*6.0) # XXX assume int() truncates!
f = (h*6.0) - i
p = v*(1.0 - s)
q = v*(1.0 - s*f)
t = v*(1.0 - s*(1.0-f))
if i%6 == 0: return v, t, p
if i == 1: return q, v, p
if i == 2: return p, v, t
if i == 3: return p, q, v
if i == 4: return t, p, v
if i == 5: return v, p, q
# Cannot get here